Copied to
clipboard

G = C2×C92⋊C3order 486 = 2·35

Direct product of C2 and C92⋊C3

direct product, metabelian, nilpotent (class 4), monomial, 3-elementary

Aliases: C2×C92⋊C3, C9214C6, (C9×C18)⋊1C3, (C3×C6).1He3, C3.He32C6, C32.1(C2×He3), He3⋊C3.3C6, (C3×C18).16C32, C6.6(He3⋊C3), (C3×C9).17(C3×C6), (C2×C3.He3)⋊1C3, C3.6(C2×He3⋊C3), (C2×He3⋊C3).1C3, SmallGroup(486,85)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×C92⋊C3
C1C3C32C3×C9C92C92⋊C3 — C2×C92⋊C3
C1C3C32C3×C9 — C2×C92⋊C3
C1C6C3×C6C3×C18 — C2×C92⋊C3

Generators and relations for C2×C92⋊C3
 G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b7c2, dcd-1=b3c7 >

3C3
27C3
3C6
27C6
3C9
3C9
3C9
3C9
9C9
9C9
9C32
3C18
3C18
3C18
3C18
9C18
9C3×C6
9C18
33- 1+2
3C3×C9
33- 1+2
3He3
3C3×C18
3C2×3- 1+2
3C2×He3
3C2×3- 1+2

Smallest permutation representation of C2×C92⋊C3
On 54 points
Generators in S54
(1 18)(2 16)(3 17)(4 10)(5 11)(6 12)(7 14)(8 15)(9 13)(19 50)(20 51)(21 52)(22 53)(23 54)(24 46)(25 47)(26 48)(27 49)(28 43)(29 44)(30 45)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 8 5 2 9 6 3 7 4)(10 18 15 11 16 13 12 17 14)(19 24 20 25 21 26 22 27 23)(28 35 33 31 29 36 34 32 30)(37 44 42 40 38 45 43 41 39)(46 51 47 52 48 53 49 54 50)
(1 24 29)(2 21 32)(3 27 35)(4 22 31)(5 19 34)(6 25 28)(7 20 33)(8 26 36)(9 23 30)(10 53 37)(11 50 40)(12 47 43)(13 54 45)(14 51 39)(15 48 42)(16 52 38)(17 49 41)(18 46 44)

G:=sub<Sym(54)| (1,18)(2,16)(3,17)(4,10)(5,11)(6,12)(7,14)(8,15)(9,13)(19,50)(20,51)(21,52)(22,53)(23,54)(24,46)(25,47)(26,48)(27,49)(28,43)(29,44)(30,45)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,8,5,2,9,6,3,7,4)(10,18,15,11,16,13,12,17,14)(19,24,20,25,21,26,22,27,23)(28,35,33,31,29,36,34,32,30)(37,44,42,40,38,45,43,41,39)(46,51,47,52,48,53,49,54,50), (1,24,29)(2,21,32)(3,27,35)(4,22,31)(5,19,34)(6,25,28)(7,20,33)(8,26,36)(9,23,30)(10,53,37)(11,50,40)(12,47,43)(13,54,45)(14,51,39)(15,48,42)(16,52,38)(17,49,41)(18,46,44)>;

G:=Group( (1,18)(2,16)(3,17)(4,10)(5,11)(6,12)(7,14)(8,15)(9,13)(19,50)(20,51)(21,52)(22,53)(23,54)(24,46)(25,47)(26,48)(27,49)(28,43)(29,44)(30,45)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,8,5,2,9,6,3,7,4)(10,18,15,11,16,13,12,17,14)(19,24,20,25,21,26,22,27,23)(28,35,33,31,29,36,34,32,30)(37,44,42,40,38,45,43,41,39)(46,51,47,52,48,53,49,54,50), (1,24,29)(2,21,32)(3,27,35)(4,22,31)(5,19,34)(6,25,28)(7,20,33)(8,26,36)(9,23,30)(10,53,37)(11,50,40)(12,47,43)(13,54,45)(14,51,39)(15,48,42)(16,52,38)(17,49,41)(18,46,44) );

G=PermutationGroup([[(1,18),(2,16),(3,17),(4,10),(5,11),(6,12),(7,14),(8,15),(9,13),(19,50),(20,51),(21,52),(22,53),(23,54),(24,46),(25,47),(26,48),(27,49),(28,43),(29,44),(30,45),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,8,5,2,9,6,3,7,4),(10,18,15,11,16,13,12,17,14),(19,24,20,25,21,26,22,27,23),(28,35,33,31,29,36,34,32,30),(37,44,42,40,38,45,43,41,39),(46,51,47,52,48,53,49,54,50)], [(1,24,29),(2,21,32),(3,27,35),(4,22,31),(5,19,34),(6,25,28),(7,20,33),(8,26,36),(9,23,30),(10,53,37),(11,50,40),(12,47,43),(13,54,45),(14,51,39),(15,48,42),(16,52,38),(17,49,41),(18,46,44)]])

70 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B6C6D6E6F9A···9X9Y9Z9AA9AB18A···18X18Y18Z18AA18AB
order123333336666669···9999918···1818181818
size1111332727113327273···3272727273···327272727

70 irreducible representations

dim11111111333333
type++
imageC1C2C3C3C3C6C6C6He3C2×He3He3⋊C3C2×He3⋊C3C92⋊C3C2×C92⋊C3
kernelC2×C92⋊C3C92⋊C3C9×C18C2×He3⋊C3C2×C3.He3C92He3⋊C3C3.He3C3×C6C32C6C3C2C1
# reps1122422422661818

Matrix representation of C2×C92⋊C3 in GL3(𝔽19) generated by

1800
0180
0018
,
700
040
005
,
600
060
009
,
010
001
100
G:=sub<GL(3,GF(19))| [18,0,0,0,18,0,0,0,18],[7,0,0,0,4,0,0,0,5],[6,0,0,0,6,0,0,0,9],[0,0,1,1,0,0,0,1,0] >;

C2×C92⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_9^2\rtimes C_3
% in TeX

G:=Group("C2xC9^2:C3");
// GroupNames label

G:=SmallGroup(486,85);
// by ID

G=gap.SmallGroup(486,85);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,224,338,873,453,3250]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^7*c^2,d*c*d^-1=b^3*c^7>;
// generators/relations

Export

Subgroup lattice of C2×C92⋊C3 in TeX

׿
×
𝔽